Loudness adaptation accompanying ribbon synapse and auditory nerve disorders.

نویسندگان

  • Dwight P Wynne
  • Fan-Gang Zeng
  • Shrutee Bhatt
  • Henry J Michalewski
  • Andrew Dimitrijevic
  • Arnold Starr
چکیده

Abnormal auditory adaptation is a standard clinical tool for diagnosing auditory nerve disorders due to acoustic neuromas. In the present study we investigated auditory adaptation in auditory neuropathy owing to disordered function of inner hair cell ribbon synapses (temperature-sensitive auditory neuropathy) or auditory nerve fibres. Subjects were tested when afebrile for (i) psychophysical loudness adaptation to comfortably-loud sustained tones; and (ii) physiological adaptation of auditory brainstem responses to clicks as a function of their position in brief 20-click stimulus trains (#1, 2, 3 … 20). Results were compared with normal hearing listeners and other forms of hearing impairment. Subjects with ribbon synapse disorder had abnormally increased magnitude of loudness adaptation to both low (250 Hz) and high (8000 Hz) frequency tones. Subjects with auditory nerve disorders had normal loudness adaptation to low frequency tones; all but one had abnormal adaptation to high frequency tones. Adaptation was both more rapid and of greater magnitude in ribbon synapse than in auditory nerve disorders. Auditory brainstem response measures of adaptation in ribbon synapse disorder showed Wave V to the first click in the train to be abnormal both in latency and amplitude, and these abnormalities increased in magnitude or Wave V was absent to subsequent clicks. In contrast, auditory brainstem responses in four of the five subjects with neural disorders were absent to every click in the train. The fifth subject had normal latency and abnormally reduced amplitude of Wave V to the first click and abnormal or absent responses to subsequent clicks. Thus, dysfunction of both synaptic transmission and auditory neural function can be associated with abnormal loudness adaptation and the magnitude of the adaptation is significantly greater with ribbon synapse than neural disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Psychological and Physiological Acoustics Session 1aPP: In Memory of Bertram Scharf: Five Decades of Contributions to Auditory Perception 1aPP8. Inspiration from Bertram Scharf's work

In 1990, Bertram Scharf and I discussed about me doing a post doc in his laboratory. The opportunity to work with Bertram did not materialize, but his work in loudness, efferents, and attention has been a continuing inspiration not only for my own research but also for auditory perception, physiology and audio engineering in general. For example, a Google Scholar search of "Bertram Scharf" on J...

متن کامل

Postsynaptic Recordings at Afferent Dendrites Contacting Cochlear Inner Hair Cells: Monitoring Multivesicular Release at a Ribbon Synapse

The afferent synapse between the inner hair cell (IHC) and the auditory nerve fiber provides an electrophysiologically accessible site for recording the postsynaptic activity of a single ribbon synapse. Ribbon synapses of sensory cells release neurotransmitter continuously, the rate of which is modulated in response to graded changes in IHC membrane potential. Ribbon synapses have been shown to...

متن کامل

Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse.

Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the tempora...

متن کامل

Review of hair cell synapse defects in sensorineural hearing impairment.

OBJECTIVE To review new insights into the pathophysiology of sensorineural hearing impairment. Specifically, we address defects of the ribbon synapses between inner hair cells and spiral ganglion neurons that cause auditory synaptopathy. DATA SOURCES AND STUDY SELECTION Here, we review original publications on the genetics, animal models, and molecular mechanisms of hair cell ribbon synapses ...

متن کامل

Time and intensity coding at the hair cell's ribbon synapse.

The activity of individual afferent neurones in the mammalian cochlea can be driven by neurotransmitter released from a single synaptic ribbon in a single inner hair cell. Thus, a ribbon synapse must be able to transmit all the information on sound frequency, intensity and timing carried centrally. This task is made still more demanding by the process of binaural sound localization that utilize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 136 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2013